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INTRODUCTION AND STATEMENT OF THE RESULTS

Let X ={1, 2, ..., n} and F be a family of subsets of X, that is F = 2*. For
lgi<j<nset[i,jl=1{i ..., j}. For integers k, m with k > 2, 0 < m < n, we say
that F has property P(k, m) if any k pairwise disjoint members of F have union of
size greater than m. Thus P(k, n) means simply that F contains no k pairwise disjoint
sets.

Let us write m in the form m = kt — r, where 1 < r < k. Define

F(n, k,m)={F< X:|F|+|F n [1,r—1]] > 1}.

It is easy to check that F(n, m, k) has property P(k, n). In fact, if F,, ..., F, are
pairwise disjoint members of F, then
FLu-— UR|=[Fil+ - +|Fl2k~ ¥ [FalLr—1]{2k—(¢-1)
1si<k

holds.
Note that for m = kt — 1 one has simply F(n, k,m) = {F < X:|F| > t}.

THEOREM 1: Suppose F = 2%, F has P(k, m). Then |F| < |F(n, k, m)| holds in
each of the following cases.

(a m=kt— 1

byk=2,m=2t-2,

(¢) k, r arbitrary, n > 2m3. Moreover, | F| = | F(n, k, m)| is possible only if F is
isomorphic to F(n, k, m).

Let us mention that the condition n > ny{m) cannot be completely removed in
(¢). In fact, Kleitman [8] proved that for n = m = kt — k the maximum size of a
family having P(n, k, n) is attained by F={F < X: |[F n {1,2,...,n—1}| 2t —1}.

Let us also note that if (c) holds for some triple (n, k, m), then it also holds for all
(', k, m) with n’ > n—this will be clear from the inductive proof of (a) and (b).

The following old conjecture of Erdos is related to our problem.
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X .
CoNJECTURE 1 [4]: Suppose G ( ; >, | X|=rt, and G contain no r pairwise

S LRIy N

The case ¢t = 2 of the preceding conjecture is a theorem of Erdds and Gallai [5].
Erdds [4] proved that for n > nyfr, £) (1) holds; moreover, if | G| is maximal, then for
some R, |R| =r — 1 on¢ has

o-foe(ponrncl

The case r = 2 is covered by the Erdos—Ko—-Rado theorem (see the next section).
In the case n = rt the inequality

lGISr_ 1 (rt>=<rt— I)
r t t
is easy to prove.

For the proof of (c) we need a strengthening of (1), which was obtained by
Bollobas et al. [3]. First let us define the family

disjoint sets. Then

E(n, r)={Ee()f):E ~ [1,r——2]¢@}

X
v {Ee(t>:(r—- DeEEn[rr+t-1]1#g}u{lrr+t—1]}
It is not hard to check that E{n, r) contains no r pairwise disjoint members,
n n—r+1 n—r—t+1
Efn, = — ' — 1.
ot =(0)-( 7))
X . e

THEOREM 2 {3]: Suppose F < ( , ), F contains no r pairwise disjoint members,

| F| > | E{n, r}| and n > 2t — 1), then for some R = (
forall F € F.

X
l)onehaanR;éQ

Let us call a family F k-times dense on Y if for all Y, = Y there exist F, F,, ...,
F,eF,sothat F,n Y=Y, forl<i<kF,—Y,...,F, — Y partition X — Y. For
0 < s < n let d(n, k, 5) denote the maximum size of F subject to the assumption that
there is no s-element set Y on which F is k-times dense.

Also, set f(n, k, m) = max{|F|: F = 2%, F has P(k, m)}.

THEOREM 3:

d(n, k, s) =f(n, k, n — s).
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Remember that 2-times dense families were used by Alon and Milman [2] in
connection with embedding problems of Banach spaces. They proved the case k = 2
of our theorems. Actually Theorem 3 will be easily derived using the compression
techniques of [1] and [7].

SHIFTING AND SOME RELATED RESULTS

One of the basic results in extremal set theory is the following.

X
ErbDOs-K0-RADO THEOREM [6]: Suppose F = ( l)’ n>2l and F n F’' # & holds

for all F, ¥’ € F. Then
n—1
F R
I |5<1—1)

For the proof of this result Erdos, Ko, and Rado introduced an important oper-
ation; the (i, j}-shift §;,

S{F) = {S,{F): F € F},
where

F-—{ipu{i}:i¢F, jeF and (F—{jPDu{ihé¢F
F, otherwise.

Si{F) = {

Note that the (J, j)-shift just replaces element j by i in those sets that contain j
but not i and for which the new set was not already in the family.
The importance of this operation lies in the following.

PROPOSITION 1: Suppose F has property P(k, m). Then |S;{F)| = | F| and S,(F)
has P(k, m), too.

Proof: Take pairwise disjoint sets 4,, 4,, ..., 4; € §;(F) and suppose for con-
tradiction |A; v --- U A;| < m. Let B, be the inverse image of A4, that is §;(B)) =
A,. Since F has P(k, m), we may assume B, # A4,, and consequentlyi € A,, j ¢ A,,
i ¢ B,,j € B,. Since the A, are pairwise disjoint, i ¢ A,for [ > 2. Thenje B,,i ¢ B,
and S;{B,) = A,. Why? The only possibility is that B = (B, — {j}) v {i} is in F.
However, B,, B}, B,, ..., B, aré pairwise disjoint sets in F with

|BuBS UBy U - UB =40V A|l<m
a contradiction. [

During his recent visit to Japan, Erdds suggested that the following might be
true.

X
THEOREM 4: Suppose n > (r + 1)k — 1, (r) = F; u F,. Then ecither F, or F,

contains k pairwise disjoint sets.
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Proof: Suppose for contradiction neither F, nor F, contains k pairwise disjoint

X
members. We may assume F, = ( r) — F,. Applying the (i, j)-shift to F, means to

X
apply the (j, i)-shift to ( ) — F,. Thus, by Proposition 1, we may apply the (i, j)-
r

shift repeatedly to F, for all 1 <i<j<n Since Y .5, Yscri iS NOt increasing
during this process and is strictly decreasing with each nontrivial shift, after finite

X
time we get a family G, (and thus G, =( )— G,), which is shifted, that is,
r

S;{G,) = G, holds for all 1 <i < j<n Moreover, neither G, nor G, contains k
pairwise disjoint sets. However, the set A, = {k, 2k, ..., k} must be either in G, or in
G, . Consider now the possible cases:

(a) Ao € G,. Since G, is shifted A, ={k — i, ..., rk — i} € G, follows for i =0, 1,
...,k —1(because S;,_; ((G) =G forall Ge G,,[=1,....,r). However, A,

Ay, ..., A, are pairwise disjoint, a contradiction.
(b) Ay € G,. Since G, is shifted A;={k + i, 2k +1i,...,rk+i} € G, fori=0, 1,
...,k — 1. However, Ao, ..., Ay~ are pairwise disjoint, a contradiction. O

REMARK 1: Note that for n = (r + 1)k — 2, neither

F, = ({1, ...,rkr - 1}) nor = (X) _F,
r

contain k pairwise disjoint sets. Thus Theorem 4 is the best possible.

PROOF OF THEOREM 1(A) AND (B)

We apply induction on n. The case m = n was proved by Kleitman [§]. Thus,
assume m < n. Suppose F has P(k, m). In view of Proposition 1, just as in the proof
of Theorem 4, we may suppose that F is shifted, that is, §;{F) = F holds for all
1 <i <j < n Define

Fmy={Fc{1,2,...,n—1}:(F U {n}) € F},
F)={F<{1,2,...,.n—1}:F e F}.

Clearly |F| = | F(n)| + | F(n)|. Suppose m =kt — 1 or k =2 and m = 2t — 2. Note
that if F=F(@n, k,m), n>m>k, then F(n)= F(n—1, k, n—k), F(h) = F(n — 1,
k, m) hold. Thus the statement will follow from the induction hypothesis as soon as
we show F(n) has P(k, m) and F(n) has P(k, m — k). The first is obvious. To prove the
second, suppose for contradiction A, ..., A, are pairwise disjoint sets in F(n) with
|4, v - U A <m—k. Since n > m, we can find elements i,, ..., i, such that
Ay u-—-uAIn{i,....i )= Since S{F)=Fforl=1,...,k B, =(4,u {i,})
€ F follows. However, B,, ..., B, are pairwise disjoint and |B, U ‘- U B,| =
f4, v - v A |+ k < m, a contradiction.

To prove the uniqueness of the extremal families apply induction again. From the
proof we know |F(n)| = |F(n — 1, k, m — k)|, n — 1 >m — k; thus, F(n)= F(n — 1,
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k, m — k). Since F is shifted, (F u {j}) € F for all F € F(n) and 1 <j < n. This gives
F 2 Fin, k, m).

Thus we proved that for n > m, |F| = | F(n, k, m)| implies F = F(n, k, m} if F is
shifted.

To conclude the proof of the uniqueness we must show that if G has P(k, m), and
for some 1 < i <j < n one has §,{G) = F(n, k, m), then G is isomorphic to F(n, k, m).

As for all

X
G e G, |54(G) =1G], ( l) e Gfollowsfort <l<n.
This concludes the proof for the case (a). In the case (b) we have to deal with

G={GeG:|G|=t—1}.
Again S;(G) = F(n, k, m) implies

, n—1
o1-(02,)

As G has P(2, 2t — 2), G’ contains no two disjoint sets. That is, G’ is an extremal
family for the Erdos—Ko—Rado theorem (I =t — 1, n > 2I). Consequently, for some

x € X one has
G’={Ge( X ):xeG},
t—1

REMARK 2: Actually, the same proof would work word for word in case (c) as
well, except that the starting case (m = n) of the induction is missing.

concluding the proof. [

REMARK 3: We outline here an alternative proof of Theorem 1 for the case
m = kt — 1, which does not use shifting. Suppose F has property Pk, m). If A € F is

—J

of size j < m, then A is contained in (n ) m-subsets of X. It is easy to check that

if |F| > |[F(n, k, t)| and m = kr — 1, this implies that there is an m-subset of X con-
taining more than | F(m, k, t)| members of F. The result now follows from the start-
ing case of the induction: n = m.

PROOF OF THEOREM 1(C)

We suppose again that F is shifted, | F| is maximal, and F has property P(k, m).
Apply induction on m. Suppose r < k.

CLAM 1. F has P(r,rt — 7).

Suppose for contradiction 4,, ..., 4, e F, A, n A;=Fand |4, v '+ UA,| <
rt — r. Using shiftedness and the maximality of | F|, we may assume A; v --- U
A, =[1,rt —r]). Define F* = {F € F: F n [1, rt —r] = J}. Then F* has property
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Ptk — r, {(k — )t + 1) — (k — r)). By the induction hypothesis
|F*| <|Fn —(rt — 1), (k —r), (k =)t + 1) — (k — r))|

_ n—rt+r—(k—r)
o ritr X
<)

Consequently,
—rt—2)—k
|F|<2'-—<" r(t ) )<2"—<tn1><]F(n,k,m)],

a contradiction for, for example, n > 2mt.

Thus F has P(r, rt —r) and by the induction assumption |F|<|F(n, r,
rt — r)| = | F(n, k, kt — r}| follows, together with the uniqueness of the extremal con-
figurations.

Finally we have to consider the case r = k, thatism = kt — k.

CLam 2: Fhas Pm k —j,(k—j)t — D) —jforalll <j <k

Proof: Suppose for contradiction 4,, ..., A, ; € F are pairwise disjoint and A is
a set of size (k — j){t — 1) — j containing 4, U --- U A, _;. Define

F*={FeF:Fn A=}

Then F* has P(n — | A|, j, j(t + 1) — ), and this leads to a contradiction in the same
way as in the case of Claim 1. [

Let us define
FO={FeF:|F|=i},f®=|F%|.

In view of Claim 2 there are no k — 1 pairwise disjoint members in F® fori <t — 1.

This yields
-1
<k — 2)(': )

And | F| > | F(n, k, kt — k)| implies

; n n—k+1
zroa(,n)-()

These two inequalities lead to

t—1 E n—1
e (=300

for, for example, n > 2k(t — 1)>. Since F*~ ! contains no k pairwise disjoint sets,
from Theorem 2 and n > 2m® > 2k(t — 1)3, it follows that there exists T < X,

|T| =k — 1, so that
_ X
F¢ ”C{Fe(t 1):FnT=ﬁQ}



ALON & FRANKL: DISJOINT SETS 15

1 -1
Consequently, for each x € T there are at least E(’; 1) sets F e F¢~ 1 with

F n T = {x}. In particular, there exist k sets F., ..., F¥, so thatF. ~ T = {x} and
FinFi={x}forl<i#j<kt

CramM 3: Forall Ge F* " onehas |G n T| > i

Proof: The statement holds voidly for i < 0, and we just proved it for i = 1. For
i > k Claim 2 implies F*~? = (. Thus we may assume 2 < i < k. Suppose for con-
tradiction G € F*™9, |G n T| < i. Let xy, ..., x,_; be distinct elements of T — G.
We want to find successively sets F,, ..., F,_; so that G, F, ..., F,_; are pairwise
disjoint, Fe F* " O F, n T={x},j=1,....,k—i.

Suppose F,, ..., F;,_, were already chosen, j<k—i Then |[GUF, u--- U
F;_.| <jt; therefore, we can choose one out of the kt sets Fl;, ..., F¥; so that it is
disjointfromG U F, v --- UF;_,.

However, |GUF, u---UF_|=0—)+k—-it—D=k—i+ 1)t —k,
contradicting Claim 2.

Now the proof is finished because, by maximality, we must have

F={FcX: |FnT|+|Flzt}. O

A REDUCTION LEMMA FOR i-TIMES DENSE FAMILIES

For F = 2¥ and i € X, let us define the following shifting-type operation C;:
C{F) = {C{F): F € F}
where

Fuli}, (ifieF,(Fu{i})¢F
F, otherwise.

cm={

LeMma 1: Suppose F is a family that is not k-times dense on any s-element subset of
X. Then C(F) has the same property as well.

X
Proof: Suppose for contradiction that C(F) is k-times dense on § € (s ) Let T

be an arbitrary subset of S. We want to show that there exist F((T), ..., F(T) e F
sothat F{T) n § = T and the sets F(T) — §,j = 1, ..., k partition X — §.

Suppose first i ¢ S and let G,(T), ..., G(T) € C{F) satisfy the preceding assump-
tions. If G(T) € F for j = 1, ..., k, then we have nothing to prove. Suppose G(T) ¢
F. Then i € G,(T), F(T) = G(T) — {i} is in F. Consider G,(T) € C{(F). How could
it happen that i ¢ G,(T)? The only explanation is that F,(T) = G(T) v {i} is also
in F. Now choosing F(T) = G(T) for the remaining values j = 3, ..., k we are done.

Suppose nextie€ Sand set T=T — {i}.

As C[F) is k-times dense on S, there exist G,(’T) e C{F), j=1, ..., k, with
G(T n 5 = Tand the sets G{T) — § forming a partition of X — S.
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Since i ¢ T, we infer that both G(T) and G(T) U {i} are in Ffor j=1, ..., k.
This completes the proof of the lemma. O

X
Proof of Theorem 3: Suppose F < 2%, F is not k-times dense on any S € ( ),
s
| F| = d(n, k, s). Repeatedly applying the operation C;,fori= 1, ..., n, to F, leads to
X .
a family G that is not k-times dense on any S e( ) either and that satisfies
s

C{G) = G, that is, G is a monotone family (Ge G, G c H < X, imply H € G). We
claim that G has P(n, k, n — s). Suppose the contrary, that is, there exist pairwise
disjoint sets G, ..., G, € G with |G, U --- U G| < n—s. Let S be an arbitrary
s-element subset of X — (G, v --- U G)).

Since G is monotone, for every T < S, the ksets G, v T, G, uT, ...,
G_,vTand (X —(G, v - v G_,;)u T are in G, showing that G is k-times
dense on S.

As |G| =|F|,|F|=dnk, s) <f(n k, n — s) follows. The opposite inequality is

X
trivial; if F has P(n, k,n — ), S € ( ), then consider T = ¢J to show that F is not
s

k-times denseon S. [
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